23 research outputs found

    Test platform for electronic control units of high-performance safety-critical multi actuator systems

    Get PDF
    In this paper we are mostly concerned with the problem of testing electronic control units of synchronized electric power actuators. This task is particularly complex for safety critical applications, where it is crucial that the control system properly reacts in response to the faults, that are hard to reproduce and verify. A cost-effective flexible and reconfigurable test platform is proposed, discussing its architecture and implementation. The proposed system facilitates the phase of definition and development of the electronic control unit, allowing the interfacing towards both hydraulic and electromechanical actuators, and having a high flexibility as regards the I/O signals. Some results, obtained during the laboratory test activity, are also presented

    A Web Service Interface for a Distributed Measurement System Based on Decentralized Sharing Network 1

    Get PDF
    Abstract: The Web Service technology has increased in importance in these years. Accessing to remote resources without knowledge about physical implementation and with a reduced hardware requirement is the main goal of new portable device. The use of Web Service technology allows clients to create a standard interface to access to the measurement service published by the server. In low cost multipoint distributed measurement systems, the measurement services are provided by Smart Web Sensors. A new concept of distributed measurement system arises from the possibility to fuse all services with the same functionality in a single user-transparent service: the response of distributed services network to a user request gives a complete vision of the service by collecting results from any Smart Web Sensor in the network. So, in this paper the development of a multipoint distributed measurement system, based on the peer-to-peer Gnutella network with Web Service interface, is presented. Copyright © 2013 IFSA

    Measurements for non-intrusive load monitoring through machine learning approaches

    Get PDF
    The topic of non-intrusive load monitoring (NILM) has seen a significant increase in research interest over the past decade, which has led to a significant increase in the performance of these systems. Nowadays, NILM systems are used in numerous applications, in particular by energy companies that provide users with an advanced management service of different consumption. These systems are mainly based on artificial intelligence algorithms that allow the disaggregation of energy by processing the absorbed power signal over more or less long time intervals (generally from fractions of an hour up to 24 h). Less attention was paid to the search for solutions that allow non-intrusive monitoring of the load in (almost) real time, that is, systems that make it possible to determine the variations in loads in extremely short times (seconds or fractions of a second). This paper proposes possible approaches for non-intrusive load monitoring systems operating in real time, analysing them from the point of view of measurement. The measurement and post-processing techniques used are illustrated and the results discussed. In addition, the work discusses the use of the results obtained to train machine learning algorithms that allow you to convert the measurement results into useful information for the user

    Conjugates between minor groove binders and Zn(II)-tach complexes: Synthesis, characterization, and interaction with plasmid DNA

    Get PDF
    A new family of conjugates between a Zn(II)-tach complex and (indole)(2) or benzofuran-indole amide minor groove binders connected through alkyl or oxyethyl linkers of different lengths has been prepared. The conjugates bind strongly to DNA. However, the complexation to DNA to promote the Zn(II) catalyzed hydrolytic cleavage of the DNA results instead in its inhibition. This inhibition effect has been confirmed also using Cu(II). Modeling studies suggest that in the most stable complex conformation, the minor groove binder and the linker lie in the minor groove hampering the interaction between the metal complex and the phosphate backbone of DNA. Therefore, the linear arrangement of minor groove binder-linker-metal complex appears to be effective to ensure tight binding but unproductive from a hydrolytic point of view. (C) 2017 Elsevier Ltd. All rights reserved

    Measuring system for microelectric power

    No full text
    In this paper, we are mostly concerned with the measurement of electric micropower and energy. This parameter is essential to evaluate the energy efficiency of low power devices, such as wireless operated monitoring and control systems. It is also important to measure the standby power consumed by appliances and equipment while switched off. The measurement of power generated by the harvesting systems is another field of application. Thus, it is important to implement the power meters to accurately measure power . The common commercially available wattmeters are inaccurate for these low-power measurements for two main reasons: a limitation on the instrument dynamic range and the intermittent operating mode of some devices. Particularly critical is the current measurement, for the high gains required in most applications. In this paper, a measuring system for microelectric power and energy is proposed. It operates for voltage up to 3 Vpp and current from 1 pA to 5 mA, corresponding to an electric power down to around a fraction of microwatt. In the following, the system architecture is described, also discussing some experimental results obtained during the characterization test
    corecore